Characterization of the aldehyde reactive probe reaction with AP-sites in DNA: influence of AP-lyase on adduct stability.

نویسندگان

  • Samuel E Bennett
  • Joshua Kitner
چکیده

Alkoxyamines react with the open-chain aldehyde form of AP-sites in DNA to produce open-chain aldehyde oximes. Here we characterize the effect of AP-site cleavage by yeast AP-endonuclease 1 (APN1) or T4 pyrimidine dimer DNA glycosylase/AP-lyase (T4 Pdg) on the efficiency and stability of the alkoxyamine aldehyde reactive probe (ARP) condensation reaction with AP-sites. The results indicate that (1) reaction of ARP with the open-chain aldehyde equilibrium form of the AP-site was less efficient than with the 3'-alpha,beta-unsaturated aldehyde produced by T4 Pdg; (2) the dRP moiety was least reactive with ARP; (3) both the AP-site and 3'-alpha,beta-unsaturated aldehyde were stable with regard to reaction with ARP over a 30-min incubation period at 37 degrees C; and (4) ARP adducted to the open-chain aldehyde form of the AP-site could be replaced by methoxyamine, but the 3'-alpha,beta-unsaturated aldehyde ARP oxime was stable against methoxyamine attack.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interstrand DNA–DNA Cross-Link Formation Between Adenine Residues and Abasic Sites in Duplex DNA

The loss of a coding nucleobase from the structure of DNA is a common event that generates an abasic (Ap) site (1). Ap sites exist as an equilibrating mixture of a cyclic hemiacetal and a ring-opened aldehyde. Aldehydes are electrophilic functional groups that can form covalent adducts with nucleophilic sites in DNA. Thus, Ap sites present a potentially reactive aldehyde as part of the internal...

متن کامل

The use of thioglycolate to distinguish between 3' AP (apurinic/apyrimidinic) endonucleases and AP lyases.

Addition of thioglycolate and DEAE-Sephadex chromatography were used to analyze the cleavage of the C(3')-O-P bond 3' to AP (apurinic/apyrimidinic) sites in DNA and to distinguish between a mechanism of hydrolysis (which would allow the nicking enzyme to be called 3' AP endonuclease) or beta-elimination (so that the nicking enzyme should be called AP lyase). For this purpose, DNA labelled in th...

متن کامل

Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions.

One of the most prevalent lesions in DNA is the apurinic/apyrimidinic (AP) site, which is derived from the cleavage of the N-glycosyl bond by DNA glycosylase or by spontaneous depurination. AP sites are repaired by AP endonucleases during the process of base excision repair; however, an imbalance in this DNA repair system may cause mutations as well as cell death. We have established a sensitiv...

متن کامل

Characterization of AP lyase activities of Saccharomyces cerevisiae Ntg1p and Ntg2p: implications for biological function.

Saccharomyces cerevisiae possesses two Escherichia coli endonuclease III homologs, NTG1 and NTG2, whose gene products function in the base excision repair pathway and initiate removal of a variety of oxidized pyrimidines from DNA. Although the glycosylase activity of these proteins has been well studied, the in vivo importance of the AP lyase activity has not been determined. Previous genetic s...

متن کامل

A method for detecting abasic sites in living cells: age-dependent changes in base excision repair.

Apurinic/apyrimidinic (AP) sites are common DNA lesions that arise from spontaneous depurination or by base excision repair (BER) of modified bases. A biotin-containing aldehyde-reactive probe (ARP) [Kubo, K., Ide, H., Wallace, S. S. & Kow, Y. W. (1992) Biochemistry 31, 3703-3708] is used to measure AP sites in living cells. ARP penetrates the plasma membrane of cells and reacts with AP sites i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleosides, nucleotides & nucleic acids

دوره 25 7  شماره 

صفحات  -

تاریخ انتشار 2006